9zip.ru Ламповый звук hi-end и ретро электроника Переделка фильтра S-90
Побывав противником аудиофилии как упрощения, я, после экспериментов, изменил свою точку зрения и теперь готов даже пожертвовать чем-то ради малого количества препятствий на пути звука :). Это действительно очень важно, даже на рассмотренных ниже динамиках. Но это заставляет так же пожертвовать некоторыми вещами: большой мощностью и загруженностью частотных полос.
Нижеразобранный по косточкам кроссовер я применил для своей s-90de с динамиками: 30ГД-2, 6ГДШ-5-5, 3ГД-2, где он просто замечательно играет с любым жанром музыки. 3ГД-2 (его более худший аналог 6ГДВ-1-16) это очень старый ВЧ динамик (мой экземпляр 1977 года) с частотой резонанса аж 4500Гц (но существует мнение, что на этом месте он достаточно спокоен), поэтому высокая частота раздела СЧ-ВЧ обусловлена именно этим фактом. Тем не менее, большинство отечественных пищалок не далеко ушли, поэтому я считаю такой срез очень хорошим для них.
Этот фильтр будет отлично работать и на хороших зарубежных СЧ-ВЧ динамиках, что я и попробовал сам :). Но, конечно, его нужно изменить с учетом всего нового (частоты раздела в том числе) - за основу взять сам принцип.
Все рекомендации должны подойти к 4-омным клонам s-90 (Орбита и др.).
p.s. Все же не стоит забывать, что все в мире не только относительно, но и субъективно :). К тому же, у меня на данный момент совсем нет средств измерения АЧХ своей системы - все подгоняется на слух в одном и том же помещении...
динамикиНЧ: Рассмотрим неплохой, в общем-то, басовик примененный в s-90. 30ГД-2 (75ГДН-1-4) номинальным сопротивлением Z=4Ом, чувствительностью S=86дБ (или дБ/Вт*м) и частотами F=30-1000Гц обеспечивает не самую лучшую ИЧХ (импеданс-частотная характеристика :)) в купе с плохим звучанием на частотах выше 500Гц.
У нас срез с него будет на 500Гц. В идеале, чтобы заставить работать этот динамик действительно хорошо, нужно отрезать от него все, что выше 200Гц. Ведь самый главный недостаток 30ГД-2 в том, что на этих частотах он бубнит ("звук из под колпака диффузора") и совсем плохо играет. Но чтобы сделать такую низкую частоту раздела нужен отличный СЧ динамик с частотой резонанса не более 70Гц.
CЧ: Штатный среднечастотник 15ГД-11 (20ГДС-4-8), с параметрами Z=8Ом, S=89дБ, F=200-5000Гц, не выдерживает никакой абсолютно критики ни по звучанию, ни по необходимым нам характеристикам. Поэтому его нужно заменить славным малышом 6ГДШ-5-4 (Z=4Ом, S=92дБ, F=150-12000Гц) который выглядит совсем несерьезно, но на деле оказывается очень даже хорош. К тому же обладает необходимыми нам размерами, ценой (не более $4!) и доступностью в России.
Нужно отметить невысокую мощность 6ГДШ-5 (как следствие неспособность работать на дискотеках/вечеринках) и всплески на некоторых участках частотного диапазона ("крикливость").
Были мнения, что 6ГДШ-5 обладает плохой направленностью на высоких частотах, из-за чего при сравнительно высоком разделе стереопанорама "неустойчива". Мне показалось это не так, поэтому, если будут проблемы, действуйте по обстоятельствам :).
ВЧ: Подойдет любая "пищалка" с параметрами S=89-92дБ и Z=16Ом. Важно отметить F (собственно говоря, минимальную рабочую частоту динамика) - она не должна быть более 4500Гц, и чем меньше, тем лучше.
Конструктивные размеры и крепления подбираются на месте подручными средствами.
чувствительностьНЧ: Чувствительность мала, а после реализации фильтра от нее остается 85дБ. Причина кроется в собственном (паразитном) сопротивлении катушки индуктивности L2. С этим ничего не сделать (если не собирать эту катушку вообще заново), будем подгонять остальные динамики под басовик.
СЧ: Чтобы отрезать лишние 7дБ (92-85=6) я предлагаю использовать вариант одного резистора, что позволит избежать лишних элементов в цепи и заодно снизит номиналы элементов фильтра из-за поднятия сопротивления динамика. Резистор R2=4.3Ом даст нам снижение на 6дБ. Снижение чувствительности резистором производится в примерном соотношении 1дБ/0.7Ом. Катушка L1 имеет собственное сопротивление 0.75Ом и поможет нам убрать еще 1дБ. Вуаля! :)
Однако, недостаток здесь в том, что нет точных формул и зависимостей, а приведенные мной значения появились в следстивии моих личных ощущений.
ВЧ: Действуем таким же методом, подбирая нужный резистор до достижения желаемого результата. Однако, в этой цепи элементов фильтра с большим собственным сопротивлением нет, поэтому резистор R1 нужно взять с запасом на 1дБ. Отметим так же, что громкость ВЧ динамиков относительно других в системе сильно характеризует ее "наклонности" - так, например, большинству слушателей нравится немного приглушенный звук ВЧ (примерно на 1-2дБ), система как бы "мягче". Что актуально для отечественных ВЧ динамиков не самого лучшего качества :)). Для тяжелой музыки может быть более важно подчеркивание высоких частот.
Приятно узнать, что изменения резисторов чувствительности в пределах одной единицы (1Ом) практически не сказывается на самом фильтре и частотах среза, что дает возможность поэкспериментировать.
Но не стоит пересекать разницу в 0.7Ома при экспериментировании с R2 - катушка L1 гораздо более чувствительна к этому изменению.
катушки индуктивностиСамое сложное. Нужно срочно найти способы измерить индуктивность, иначе точной настройки не получится.
За неимением способа померить предлагаю следующее: сравнивать катушки по собственному сопротивлению, учитывая все конструктивные параметры. Теоретически, если совпадут все факторы влияющие на номинал индуктивности (есть и совсем интересные - плотность витков, содержание примеси железа в каркасе :)), то можно получить необходимую индуктивность, как бы "по образцу".
Не смотря на все, этот метод, нужно сказать, очень неточен. Разницы между индуктивностью L2, к примеру, 1.5мГн и 1.27мГн по сопротивлению нет.
НЧ: Приведу свои параметры большой катушки (у нее еще "уши" по бокам): внутренний диаметр кольца: 35мм, внешний: 70мм, высота катушки: 37мм, ширина области намотки (высота без бортиков): 30мм, толщина провода (медь, эмалированная): 1мм. При этих параметрах сопротивление катушки постоянному току (измерянное цифровым тестером): 0.8Ом.
При соблюдении этих параметров у вас должна получиться индуктивность в районе 1.0-1.6мГн, поздравляю :).
Можно намотать катушку "старым дедовским" способом, зная какое количество витков нужно сделать. С недавних пор это стало известно: для 1.27мГн необходимо 210 витков "ручной" (не очень аккуратной) намотки. При этом на каждые 0.05мГн приходится примерно по 5 витков.
СЧ: Маленькие катушки должны быть все одинаковые по каркасу, я взял с самой маленькой индуктивностью. Внутренний диаметр кольца: 12мм, внешний: 32мм, высота катушки: 23мм, ширина области намотки (высота без бортиков): 18мм, толщина провода (медь, эмалированная): 0.5мм. Сопротивление: 0.7Ом, индуктивность 0.18-0.21мГн.
При 0.18мГн количество витков составляет 127 штук. При 0.21мГн - 136.
Кстати, не повторяйте ошибок СССР-сборщиков, не крепите маленькие катушки шурупами внутри - изменится индуктивность и добавится нелинейность; крепите на клей.
Для тех кто меряет сам: бесполезно пытаться перематывать маленькую катушку толстым проводом от большой, а вы наверняка захотите сделать это :). Даже намотав полностью весь каркас я не получил индуктивности более 0.1мГн.
В тоже время, если соорудить новый оптимальнейший каркас (см. линки, "Cec"), что не так-то просто как кажется, то собственное сопротивление катушки позволить выгадать 1дБ к чувствительности динамика - нужно будет немного откалибровать резисторы чувствительности перед динамиками.
Если попробовать найти где-нибудь еще такие же большие каркасы и намотать L1 катушки толстым проводом, то их сопротивление получится примерно 0.4Ом - тоже лучше.
p.s. Убедительно прошу, не пишите мне письма с просьбой помочь подсчитать этим методом индуктивность на других каркасах и другого номинала. Собирайте "коробочку" (см. линки), это очень легко и решит все ваши проблемы с точной намоткой катушек.
конденсаторыВсе предельно просто. Нужно найти такие же значения приличных по качеству конденсаторов, про типы можно прочитать тут, там же про резисторы, кстати. Конденсаторы можно объединять (суммировать) параллельно (как и уменьшать по правилу сопротивлений соединяя последовательно). Если вы разобрали фильтры s-90, то у вас уже должен быть неплохой набор нужных емкостей :).
Из отечественных, вместо наверняка попавшихся пленочных к73-хх, рекомендую попробовать металобумажные МБхх - более "мягкий" звук. При наличии средств и доступности желательно зарубежные MKP (1мкФ ~ $1.1, отечественный аналог - к78).
Конденсаторы, конечно, неполярные и на напряжение не менее 40В. Качество элементов в цепях Цобеля так же важно.
Здесь можно поэкспериментировать с изменением "окраса" системы, который дают конденсаторы. Рекомендую попробовать зашунтировать все конденсаторы (кроме тех, что в цепи Цобеля) небольшими (в районе 0.1мкФ) конденсаторами других, обычно более качественных, типов. Например, полистереном (к71-7) или слюдой (СГМ) - в результате получается более детальное звучание на средневысоких частотах и повышается прозрачность системы. К тому же метало-бумажные (МБхх) конденсаторы дают немного "мутный" звук. Шунтировать - значит объединять вместе параллельно :).
резисторыМощностью не менее 2Вт, при меньших возможен перегрев и изменение номинала. Из отечественных можно применить МЛТ-2. ПЭВ-10 из комплекта s-90 не самые лучшие, но скрепя сердцем пойдут... Рекомендую китайскую керамику - выглядит как белые зубы, большая такая, недорого продается повсеместно в радиомагазинах (мощности до 15Вт), но разброс номиналов присутствует в полной мере.
В прочем, на недискотечных мощностях отлично работают и маломощные МЛТ-резисторы, по крайней мере на месте R1.
Прошу обратить внимание на то, что номинал написанный на резисторе вовсе не обязательно тоже самое, что на самом деле. Настоятельно рекомендую подбирать резисторы отмеряя их омметром/тестером. В схеме приведены четко отмерянные резисторы.
При окончательной сборке колонок очень настоятельно рекомендуется ставить резисторы R1 и R2 как можно ближе к динамикам - прямо на клеммы. Это позволит очень сильно снизить влияние кабеля (который после этих резисторов, но не до них) на звук.
цепи Цобеля
Причина в том, что импеданс динамика непостоянен и растет со снижением отдачи по частоте. Этот эффект имеет место во всех без исключения головках динамического типа, независимо от страны и года производства. Точнее говоря, цепь Цобеля (в моем фильтре применен только упрощенный ее вариант; полные позволяют регулировать импеданс на низких частотах, что не всегда нужно) необходима для нормальной работы катушек индуктивности фильтра, при достаточно большой собственной индуктивности катушки динамика. Без цепи Цобеля работа индуктора как ФНЧ грубо нарушается и фильтрация практически не осуществляется вообще (!).
НЧ: Элементы R4 и C4. C3 желательно ставить больше, чем 60мкФ, но и их, для частоты раздела в 500Гц достаточно. R4 равен 4.3Ом.
Сравните ИЧХ 30ГД-2 без Цобеля и с ним. Графики приблизительные, но там можно увидеть частоту настройки фазоинвертора s-90 - вторая громадная скала слева, перед 100Гц :).
СЧ: ИЧХ 6гдш-5. Можно попробовать сгладить выше 3кГц Цобелем R3, C3. Для этого хватит 10-20мкФ и резистора 8.0Ом.
Важно: цепь Цобеля на СЧ обязательна для нормальной работы этого кроссовера. Без нее "новый легкий фильтр" показал свою полную несостоятельность на СЧ-ВЧ.
ВЧ: Из-за низкой индуктивности собственной катушки динамика и срезе на низких частотах цепь неактуальна.
фильтрВо всех частотных звеньях применен пассивный всепропускающий фильтр первого порядка с затуханием 6дБ на октаву (изменение частоты в два раза), аппроксимация по Баттерворту. Собственно, сам фильтр посчитан программой JBL Speaker Shop и немного подогнан вручную :)).
НЧ: Фильтр низких частот. Как уже можно было понять, частота среза 500Гц (для 30ГД-2/75ГДН-1-4 желательна ниже, но выбрана как компромисс к 6ГДШ-5). Обеспечивается элементом L2, нагрузкой динамика в купе с упрощенной корректирующей цепью Цобеля.
СЧ: Полосовой фильтр. Нижняя часть (C2) согласована с фильтром НЧ звена и настроена на частоту среза 500Гц исходя из соображений резонансной частоты 6ГДШ-5. Верхняя часть (L1) согласована с фильтром ВЧ звена и настроена на 7500Гц, что позволяет сделать широкополосная структура динамика, в купе с Цобелем.
Обе части нагружены на 8Ом (4Ом от 6ГДШ-5-4 + 4Ом от R2).
ВЧ: Фильтр высоких частот. Частота согласована с верхней частью фильтра СЧ звена и работает на 7500Гц, что позволяет избежать проблем связанных с высокой частотой основного резонанса отечественных ВЧ динамиков. Нагрузка 21Ом (16Ом динамик + 5Ом от R1).
Все динамики включены синфазно, что в меньшей степени сказывается на фазовых характеристиках системы.
схемаСхема, принципиальная электрическая. Нажмите чтобы увеличить :).
Стрелочкой справа показан "вход звука" от усилителя. Пунктирные линии это bi-wiring (НЧ и СЧ-ВЧ звенья фильтра соединяются между собой параллельно у усилителя - плюс НЧ с плюсом СЧ-ВЧ к плюсу усилителя, минусы аналогично).
Серые цифры в скобках над элементами фильтра - их нагрузка. Серые цифры с "r" перед ними - собственное сопротивление элемента. Серые пометки -1dB - потери чувствительности динамика на элементах.
Рядом с динамиками кратко выписаны их важные характеристики, ниже указаны частоты раздела полос/звеньев.
Индуктивности в мГн, емкости в мкФ, сопротивления в Ом. После собирания фильтра, номинальное сопротивление колонки для усилителя остается равным 4Ом.
К получившимся колонкам рекомендуется мощный транзисторный усилитель (60-100Вт на канал к 4Ом) с высоким коэффициентом демпфирования (чем он больше, тем лучше звучит "бас" и соблюдается контроль усилителя за НЧ динамиком).
Вариант "нового легкого" фильтра для клонов s-90, точнее для Орбита 35АС-016. Динамики: 10гдв-2-16, 6гдш-5-4, 75гдн-1-4 - достаточно распространенный набор.
Материал прислал автор, забывший подписаться.
52 нравится?
13 16.09.2016 ©
9zip.ru Авторские права охраняет Роскомнадзор
| Понравилась статья? Алиса Селезнёва говорит: поделись с друзьями! |
|
Хочешь почитать ещё про ламповый звук? Вот что наиболее популярно на этой неделе:
Материал прислан одним из посетителей, к сожалению, без указания ссылки на источник.
, Изготовление универсального выходного трансформатора на магнитопроводе ОСМ-0,16 для однотактных ламповых усилителей, подходящего для большинства различных ламп и схем. Технологическая